

DK-HN-IE PN IO Porting instructions

SIMATIC NET

PC software
DK-HN-IE PN IO Porting
instructions

Programming Manual

09/2016
C79000-G8976-C439-01

Introduction
 1

Quick Start
 2

Preparing RTAI and the
Linux kernel

 3

Description of driver porting
 4

Description of porting the IO
base library

 5

 Siemens AG
Division Process Industries and Drives
Postfach 48 48
90026 NÜRNBERG
GERMANY

Document order number: C79000-G8976-C439-01
Ⓟ 08/2016 Subject to change

Copyright © Siemens AG 2016.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

Danger
indicates that death or severe personal injury will result if proper precautions are not taken.

Warning
indicates that death or severe personal injury may result if proper precautions are not taken.

Caution
indicates that minor personal injury can result if proper precautions are not taken.

 Notice
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

Warning
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 3

Table of contents

1 Introduction ... 5

1.1 Note on the SIMATIC NET glossary - DVD + Internet .. 6

2 Quick Start .. 7

2.1 Architecture of the DK HN-IE PN IO software .. 7

2.2 Installation in Linux ... 9

3 Preparing RTAI and the Linux kernel ... 11

3.1 Preparing the system .. 11

3.2 Generating, installing and testing real-time extension RTAI... 11
3.2.1 Downloading source files from the Internet .. 11
3.2.2 Extracting source files ... 12
3.2.3 Configuring and generating the Linux kernel .. 13
3.2.4 Installing the generated Linux kernel .. 14
3.2.5 Configuring and generating the RTAI real-time extension.. 15
3.2.6 Checking whether the real-time extension RTAI works .. 16

3.3 Basic procedure for installing the DK HN-IE PN IO software in Linux. 18

4 Description of driver porting... 21

4.1 Requirements for the target operating system ... 21

4.2 How the driver basically works ... 22

4.3 Basic communication between the library and the driver ... 25
4.3.1 Directory structure and files .. 26
4.3.2 Non operating system-specific functions .. 27
4.3.3 Functions dependent on the operating system ... 29

4.4 Porting the driver step-by-step .. 31
4.4.1 Stage 1: Porting the macros of the "os_linux.h" file .. 31
4.4.2 Stage 2: Initialization and deinitialization .. 33
4.4.3 Stage 3: Finding the CP and including the resources of the CP in the operating system 33
4.4.4 Stage 4: Defining the driver interface ... 33
4.4.5 Stage 5: Porting the connection establishment and termination from the IO-Base

library to the driver. ... 35
4.4.6 Stage 6: Porting send functionality from the IO-Base library to the firmware 36
4.4.7 Stage 7: Porting the receive functionality from the firmware to the IO-Base library. 37
4.4.8 Stage 8: Porting memory referencing in the user address space .. 38

5 Description of porting the IO base library ... 39

5.1 Requirements for the target operating system ... 39

5.2 How the IO-Base library works ... 39

5.3 Directory structure and files .. 41

5.4 Functions dependent on the operating system ... 42

Table of contents

 DK-HN-IE PN IO Porting instructions
4 Programming Manual, 09/2016, C79000-G8976-C439-01

5.5 Porting the IO-Base library step-by-step .. 43
5.5.1 Stage 1: Porting the trace module ... 43
5.5.2 Stage 2: Porting the IO-Base library link to the driver.. 43

5.6 IO-Base library debug support ... 44

5.7 Testing the IO-Base library .. 46

 Index .. 47

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 5

 Introduction 1

Trademarks
The following and possibly other names not identified by the registered trademark sign ® are
registered trademarks of Siemens AG:

SIMATIC NET, HARDNET, SOFTNET, CP 1612, CP 1613, CP 5612, CP 5613, CP 5614,
CP 5622

Industry Online Support
In addition to the product documentation, the comprehensive online information platform of
Siemens Industry Online Support at the following Internet address:
Link: (https://support.industry.siemens.com/cs/de/en/)

Apart from news, there you will also find:

● Project information: Manuals, FAQs, downloads, application examples etc.

● Contacts, Technical Forum

● The option submitting a support query:
Link: (https://support.industry.siemens.com/My/ww/en/requests)

● Our service offer:

Right across our products and systems, we provide numerous services that support you
in every phase of the life of your machine or system - from planning and implementation
to commissioning, through to maintenance and modernization.

You will find contact data on the Internet at the following address:
Link: (http://www.automation.siemens.com/aspa_app/?ci=yes&lang=en)

SITRAIN - Training for Industry
The training offer includes more than 300 courses on basic topics, extended knowledge and
special knowledge as well as advanced training for individual sectors - available at more
than 130 locations. Courses can also be organized individually and held locally at your
location.

You will find detailed information on the training curriculum and how to contact our customer
consultants at the following Internet address:

Link: (http://sitrain.automation.siemens.com/DE/sitrain/default.aspx?AppLang=en)

Security information
Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

https://support.industry.siemens.com/cs/de/en/
https://support.industry.siemens.com/My/ww/en/requests
http://www.automation.siemens.com/aspa_app/?ci=yes&lang=en
http://sitrain.automation.siemens.com/DE/sitrain/default.aspx?AppLang=en

Introduction
1.1 Note on the SIMATIC NET glossary - DVD + Internet

 DK-HN-IE PN IO Porting instructions
6 Programming Manual, 09/2016, C79000-G8976-C439-01

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines
and networks. Systems, machines and components should only be connected to the
enterprise network or the internet if and to the extent necessary and with appropriate security
measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens’ guidance on appropriate security measures should be taken into
account. For more information about industrial security, please visit
Link: (http://www.siemens.com/industrialsecurity)

Siemens’ products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends to apply product updates as soon as available and to
always use the latest product versions. Use of product versions that are no longer supported,
and failure to apply latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed under
Link: (https://support.industry.siemens.com/cs/ww/en/)

1.1 Note on the SIMATIC NET glossary - DVD + Internet

SIMATIC NET glossary
Explanations of many of the specialist terms used in this documentation can be found in the
SIMATIC NET glossary.

You will find the SIMATIC NET glossary here:

● SIMATIC NET Manual Collection or product DVD

The DVD ships with certain SIMATIC NET products.

● On the Internet under the following address:

38652101 (https://support.industry.siemens.com/cs/ww/en/view/38652101)

http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/ww/en/
https://support.industry.siemens.com/cs/ww/en/view/38652101

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 7

 Quick Start 2
2.1 Architecture of the DK HN-IE PN IO software

Description
This document applies to the module CP 1626. The following graphic shows the software
layers and communication paths of the DK HN-IE PN IO software. The following table
explains the terminology used in the graphic.

Quick Start
2.1 Architecture of the DK HN-IE PN IO software

 DK-HN-IE PN IO Porting instructions
8 Programming Manual, 09/2016, C79000-G8976-C439-01

Picture element Description
IO-Base library The IO-Base library makes the IO-Base user programming interface available. The

functions required for driver communication and the trace must be ported from the
IO-Base library.

Serv library The Serv library makes the Serv user programming interface available. When port-
ing the Serv library, the driver communications, synchronization and file access
functions defined in the "os_linux.h" file must be adapted to the new operating sys-
tem.

Driver The driver performs the following functions:
• Communication between the software components IO-Base library – Serv library

– firmware.
• Integration of the hardware resources in the operating system.
All driver functions must be ported to the target operating system.

DPRLIB The DPRLIB library is used by the driver and makes all non platform-dependent
functions required for communication available to the firmware via the dual-port
RAM.

Dual-port RAM The dual-port RAM is the memory area of the CP 1626 that is used for handling
communication between the firmware and host. This memory area is divided into
independent communication channels.

Register Register is the memory area in which the registers of the CP 1626 are located.
PAEA PAEA-RAM is the memory containing the process data of the CP 1626.
Arrows Arrows are independent communication channels.

 Quick Start
 2.2 Installation in Linux

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 9

2.2 Installation in Linux

Introduction
The development kit provides you with source files in Linux for the sample applications, the
driver, the IO-Base library and the Serv library. These source files can be ported to other
operating systems.

To install the driver, the IO-Base library and the Serv library, you require Linux with kernel
source files installed and a development environment, for example GNU-C-Compiler.

To use isochronous real time (IRT), we recommend the installation of the real-time extension
RTAI, since without these extensions, Linux takes longer to report an interrupt to the
application.

Administrator privileges
To install the driver of the IO-Base interface, you require administrator privileges.

Linux system requirements
The table below contains the recommended versions of the required software components.

System partner Version
Linux system Suse Linux 11.2
Kernel As of version 2.6.10, in the example version 2.6.32.2 is used
GNU C compiler (GCC) As of version 3.3.5
Kernel source files Suitable for the kernel
Real-time extension RTAI,
available at RTAI (www.rtai.org)

Suitable for the kernel, in the example version 3.8 is used

In terms of the size of the swap partition it is practical to adopt the specifications of the Linux
installation program.

 Note

You will find the latest information on Linux system requirements on the Internet at RTAI
(www.rtai.org).

Hardware requirements
The table below lists the system resources required by the driver and IO-Base library.

System computer Values
Hard disk space At least 100 MB, with extensive configurations also more.
Processor At least Intel Pentium 4 or higher.
RAM At least 8 MB.

Quick Start
2.2 Installation in Linux

 DK-HN-IE PN IO Porting instructions
10 Programming Manual, 09/2016, C79000-G8976-C439-01

System computer Values
Memory with DMA capability At least 4 MB.
Interrupts • In IRT operation:

 one non-shared interrupt
• In operation without IRT:

 one interrupt, either shared or non-shared

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 11

 Preparing RTAI and the Linux kernel 3
3.1 Preparing the system

So that general operation in real time is possible, the BIOS settings must first be checked
and, if necessary, adapted. This applies especially to the option that allows the processor
clock rate to be adapted. This setting is known as "Speedstep", "Enhanced Idle Power
State", "P-States", "IST", "EIST", "Cool’n’Quite" or "PowerNow" and it must be disabled.

3.2 Generating, installing and testing real-time extension RTAI

Description
The following procedure outlines the principles underlying installation. The installation can
change so you should therefore always read the installation instructions supplied for the
kernel and RTAI. Follow the steps described in the following subsections.

 Note

Adapt the version numbers in the paths and cmmands.

3.2.1 Downloading source files from the Internet

Description
If you do not already have the required source files, download them from the Internet as
described below:

Step 1
Download version 3.8 of RTAI from the Internet.

Link: (http://www.rtai.org)

 Note

If the files are downloaded when using a Windows operating system, it is possible that the
file name changes.

You should therefore rename the files as they were before the download.

http://www.rtai.org/

Preparing RTAI and the Linux kernel
3.2 Generating, installing and testing real-time extension RTAI

 DK-HN-IE PN IO Porting instructions
12 Programming Manual, 09/2016, C79000-G8976-C439-01

Step 2

Command: su
Description: Change to the user "root" with the substitute user command.

Change to the folder "RTAI-3.8/base/arch/x86/patches". This folder contains
real-time patches for the supported Linux kernel versions.

Step 3
Select one of the supported Linux kernels (for RTAI V3.8 for example V2.6.32.2 can be
recommended) and download the kernel sources from the Internet.

Link: (http://www.kernel.org)

Save the kernel sources in the /usr/src directory.

3.2.2 Extracting source files

Description
After you have downloaded the files from the Web, they are still compressed. Follow the
steps outlined below to extract the files.

Step 1

Command: su
Description: Change to the user "root" with the substitute user command.

Step 2

Command: cd /usr/src
Description: Go to the "/usr/src/" directory.

Step 3

Command: bunzip2 linux-2.6.32.2.tar.bz2

tar –xf linux-2.6.32.2.tar
Description: Extract the Linux kernel source code.
Command: bunzip2 rtai-3.5-cv.tar.bz2

tar –xf rtai-3.5-cv.tar
Description: Extract the source code of the real-time extension RTAI.

http://www.kernel.org/

 Preparing RTAI and the Linux kernel
 3.2 Generating, installing and testing real-time extension RTAI

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 13

3.2.3 Configuring and generating the Linux kernel

Description
Below the configuration and generation of a Linux kernel with real time capability is
described.

Step 1

Command: su
Description: Change to the user "root" with the substitute user command.

Step 2

Command: cd /usr/src/linux-2.6.32.2
Description: Go to the "/usr/src/linux-2.6.32.2" directory.

Step 3

Command: patch –p1 –i ../rtai-3.8/base/arch/x86/patches/hal-linux-2.6.32.2-x86-2.5-

00.patch
Description: Add the RTAI patch to the Linux source code.

Step 4

Command: cat /proc/config.gz | gunzip > .config

make oldconfig
Description: Adopt the kernel configuration from the running kernel and extend the con-

figuration if any options are undefined. Accept all the defaults by repeatedly
pressing the "ENTER" key.

Step 5

Command: make menuconfig or make xconfig
Description: Reconfigure the kernel.

Make sure that the following options are set correctly:

Options Value
Enable Loadable module support →
Module versioning support

OFF

Processor type and features →
Subarchitecture type

PC-compatible

Preparing RTAI and the Linux kernel
3.2 Generating, installing and testing real-time extension RTAI

 DK-HN-IE PN IO Porting instructions
14 Programming Manual, 09/2016, C79000-G8976-C439-01

Options Value
Processor type and features →
Processor family

Select the processor family most similar to your
processor.
(Pentium-Classic normally works with newer Intel
processors)
If you have a multicore processor, then only se-
lect a processor family that supports TSC!

Processor type and features →
Generic x86 support

OFF

Processor type and features →
Symmetric multi-processing support

For single core systems: Off
For multicore systems: On

Processor type and features →
Support sparse irq numbering

OFF

Processor type and features →
IBM Calgary IOMMU support

OFF

Processor type and features →
AMD IOMMU support

OFF

Processor type and features →
Allow for memory hot-add

OFF

Ipipe support →
Ipipe support
or
Processor type and features →
Interrupt pipeline

ON

Kernel hacking →
Compile the kernel with frame pointers

OFF

Bus options → Support for Interrupt Remapping OFF

Save the configuration by answering the question "Save new kernel configuration?" with
"Yes" before you exit.

Step 6

Command: make clean all
Description: Compile the kernel.

3.2.4 Installing the generated Linux kernel

Description
Once you have generated the kernel, this must be installed so that it can be loaded the next
time you restart the PC. Follow the steps outlined below:

 Preparing RTAI and the Linux kernel
 3.2 Generating, installing and testing real-time extension RTAI

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 15

Step 1

Command: su
Description: Change to the user "root" with the Switch User command.

Step 2

Command: cd /usr/src/linux-2.6.32.2
Description: Go to the "/usr/src/linux-2.6.32.2" directory.

Step 3

Command: make modules_install
Description: Install the kernel modules.

Step 4

Command: make install
Description: Install the kernel.

Step 5

Command: reboot
Description: Restart your PC and select the entry with for the kernel you have just in-

stalled in the Boot menu.

3.2.5 Configuring and generating the RTAI real-time extension

Description
After installing the kernel, the modules for the real-time extension for RTAI must be
configured and generated. Follow the steps outlined below:

Step 1

Commands: su

 cd /usr/src/RTAI-3.8
Description: Change to the user "root" with the Switch User command, and then change

to the "/usr/src/RTAI-3.8" directory.

Preparing RTAI and the Linux kernel
3.2 Generating, installing and testing real-time extension RTAI

 DK-HN-IE PN IO Porting instructions
16 Programming Manual, 09/2016, C79000-G8976-C439-01

Step 2

Commands: make menuconfig
Description: Configure RTAI.

Match the RTAI options with those of your Linux kernel.
Note the following points:
• If your Linux kernel is set to SMP, RTAI must also set to this.
• The path to the Linux source code must also be correctly set.
• For SMP, the number of processors in the kernel must match the setting

in RTAI.
• If you use a hyperthreading CPU and hyperthreading is enabled in the

BIOS, the SMP option must be selected for the kernel and for RTAI (a
processor with hyperthreading behaves like two processors).

• Set the number of CPUs being used in "Machine(x86)->Number of
CPU’s". You will find the number in the file /proc/cpuinfo.

Step 3

Commands: make install
Description: Compile and install RTAI.

3.2.6 Checking whether the real-time extension RTAI works

Description
Checking whether the real-time extension integrated in the Linux kernel actually works is
based on latency measurements of the sample program supplied with RTAI.

Running the test

Command: su
Description: Change to the user "root" with the Switch User command.

Start the test programs that ship with RTAI:
• "/usr/realtime/testsuite/user/latency/run" or
• "/usr/realtime/testsuite/kern/latency/run"
The test programs measure the delay times (latency measurement) and
display them continuously on the screen.
These times must be significantly shorter than the configured cycle time if
you increase the system load. This can, for example, occur when the PC
mouse is moved quickly, when you type quickly on the keyboard or when
other peripheral devices or the hard disk are accessed.

 Preparing RTAI and the Linux kernel
 3.2 Generating, installing and testing real-time extension RTAI

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 17

 Note

The changes in latency have decisive effects on the functionality of your user program. The
latency should only be a fraction of the cycle time. If the latency is too long, an "overrun" can
occur. This should be avoided.

Procedure following an unsatisfactory test
If the latency changes considerably, your system configuration is only suitable for real-time
applications with certain restrictions or is not suitable at all. This also applies to isochronous
real time (IRT).

In this situation, you should try to change the options for the kernel and RTAI, for example:

● Disable support of ACPI.

● Disable support of APIC and APM.

● Disable support of SMP or hyperthreading.

● Disable "Legacy Support for USB" in the BIOS.

● Disable the 3D acceleration for your X windows (graphic user interface).

● Disable the graphics mode, for example with the command line command "init 3"; then
repeat the latency measurements.

To increase the load, you can, for example, switch over from one console to another with the
shortcuts Ctrl + Alt + F1 to Ctrl + Alt + F7 and start further programs.

If the latency measurement is successful, this means that you will need to change the
graphics card driver. Tip: The VESA frame buffer driver has often proved to be a suitable
alternative.

● Disable support of all unnecessary options (USB, sound card, modem etc.).

If these suggestions do not help, you can obtain further help for example on the Web site of
the manufacturer.

Link: (http://www.rtai.org)

http://www.rtai.org/

Preparing RTAI and the Linux kernel
3.3 Basic procedure for installing the DK HN-IE PN IO software in Linux.

 DK-HN-IE PN IO Porting instructions
18 Programming Manual, 09/2016, C79000-G8976-C439-01

3.3 Basic procedure for installing the DK HN-IE PN IO software in Linux.
The section below describes the actions to be carried out when installing the driver, the IO-
Base from a shell (command line). To do this, you may have to make a number of platform-
specific modifications.

Step 1

Command: su
Description: Open a "root shell".

Step 2

Command: mount –t iso9660 /dev/cdrom /media/cdrom
Description: Mount the CD

Step 3

Command: cp /media/cdrom/linux-sw/host-xxx.tar.gz
Description: Copy the files.

Step 4

Command: tar –xzf host-xxx.tar.gz

("xxx" is a placeholder)
Description: Extract the files.

Step 5

Command: cd host_linx
Description: Change to the installation directory.

Step 6

Command: export RTAI=y
Description: If the real-time extension is used.

 Preparing RTAI and the Linux kernel
 3.3 Basic procedure for installing the DK HN-IE PN IO software in Linux.

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 19

Step 7

Command: make
Description: Generation of the driver, the IO-Base and the Serv library.

This is only possible if the real-time extensions were successfully installed,
see Section "Generating, installing and testing real-time extension RTAI
(Page 11)".

Step 8

Command: make install
Description: Installation of the driver, the IO-Base and the Serv library and header files.

The PROFINET IO and the Serv library are copied to the "/usr/lib" directory
and the driver to the "/lib/modules/<Kernel Version>/misc" directory.
The header files of the IO-Base library "pniobase.h", "pniousrd.h",
"pniousrt.h", "pniousrx.h", "pnioerrx.h" and the header files of the Serv li-
brary "servusrx.h" are copied to the "/usr/include" library.

Step 9

Command: make load
Description: Load and start the driver.

 Note

Note that you must start the driver again manually each time the PC is restarted. You can
have the driver start automatically by configuring the file "/etc/rc.d" manually; for an example,
refer to "Makefile" under the "Maketarget" "autoload".

Installing a sample program
The section below describes the actions to be carried out when installing the sample
programs in a shell (command line). To do this, you may have to make a number of platform-
specific modifications.

Command: make test
Description: Generate the test programs.

Preparing RTAI and the Linux kernel
3.3 Basic procedure for installing the DK HN-IE PN IO software in Linux.

 DK-HN-IE PN IO Porting instructions
20 Programming Manual, 09/2016, C79000-G8976-C439-01

Testing after installation
The table below shows you how to test the driver and the IO Base library following
installation:

Action Description
Testing the driver Call "make load". No error message should be displayed if

the CP 1626 has been installed correctly in the PC.
Testing the firmware on the CP 1626 Take the configuration of the sample application

"ctrl_rw_digital_io" and use TIA Portal STEP 7 or NCM to
download from a configuration station to the CP 1626.

Testing the dual-port RAM Call the application "serv_get_fw_info". The configuration of
the CP must output this to you. If the host does not receive
an answer, a "PNIO_ERR_NO_FW_COMMUNICATION" is
returned.

Testing the IO-Base library Put the sample application "ctrl_rw_digital_io" into opera-
tion. This test application implements an IO controller. The
required configuration is enclosed with the example.

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 21

 Description of driver porting 4

This chapter explains the functionality of the Linux driver. You will learn step-by-step how to
port the driver to your target operating system.

4.1 Requirements for the target operating system

Description
The driver requires the following operating system functionality:

● Threads

● Mutexes

● Semaphores

● Memory mapping from the kernel address space to the user address space if the address
areas differ.

● Guaranteed reaction times to interrupts when operating in isochronous real-time mode. If
the reaction times to interrupts are extremely high, IRT can only be operated with long
cycle times.

Description of driver porting
4.2 How the driver basically works

 DK-HN-IE PN IO Porting instructions
22 Programming Manual, 09/2016, C79000-G8976-C439-01

4.2 How the driver basically works

Overview
The driver is used to activate the CP 1626 and to integrate the memory windows and IRQs
of the CP 1626 in the operating system. It performs the following functions:

● Processing interrupts

● Referencing the process image of the CP for the IO-Base library.

● Processing jobs between thwe IO-Base library and the firmware on the CP.

The driver also contains a watchdog function that monitors the firmware on the CP. This can
be recognized when the firmware no longer functions correctly.

The following figure shows the basic structure of the driver and the CP 1626. The arrows
indicate the communications channels of the driver to the hardware and firmware.
Communication channels are memory areas on the CP 1626 that contain 2 ring buffers (one
ring buffer for jobs from the driver to the firmware and one ring buffer for jobs from the
firmware to the driver). The boxes above the driver represent the device files. In Linux,
device files are driver access points via which applications communicate with the driver.

Figure 4-1 Function diagram of the driver and firmware with the available communications channels.

 Description of driver porting
 4.2 How the driver basically works

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 23

Description of the "Makefile"
To load the driver, call the supplied "Makefile" with "make load" in the "cp1626"" directory.
When it is activated, it creates the "cp16xx1" entry and the "cp1626_1/control" subentry in
the device tree ("/dev"). The script for the communication channels in the dual-port RAM also
creates the following device files:

Device files /dev/cp16xx1/... Supported file operations Communications channel for ...
stream_req open, read, write, ioctl ...sending data streams
stream_resp open, read, write, ioctl ...receiving data streams
sync open, read, write, ioctl ... synchronous jobs
alarm open, read, write, ioctl ... asynchronous alarm jobs
modind open, read, write, ioctl ... asynchronous changes in protocol state
datarec open, read, write, ioctl ... data record transfer
service open, read, write, ioctl .. the management of the CP
notify open, read, write, ioctl ... feedback when monitoring with SERV_CP_info
watchdog open, read, write, ioctl ... the monitoring of application and firmware
control open, read, write, ioctl,

mmap
... the instance management of the driver - This communi-
cations channel has no equivalent in the dual-port RAM.

These device files are used by the IO-Base and the Serv library to communicate with the CP.
For the precise sequence and the required script commands, refer to the
"/driver/cp16xxloader" script file.

Description of driver startup
The driver allocates all of the PCIe resources required for the dual-port RAM, register, IRQ.
The driver then triggers an interrupt on the CP so that the firmware initializes the
communications channels. The firmware uses an interrupt and a status value in the
configuration structure to inform the driver that initialization was successful and that it is
ready for communication. After this, the firmware registers with the driver for time monitoring.

Description of the driver in the productive phase
The driver stores jobs coming from the IO-Base library in the communications channel
required by the IO-Base library and triggers an interrupt in the firmware. Once the firmware
has processed these jobs, it places an acknowledgment on the communications channels
and indicates this by sending an interrupt to the driver. The driver then transfers the
acknowledgments to the IO-Base library.

Once the firmware has written jobs for the IO-Base library in the communications channels, it
signals this with an interrupt to the driver. The driver then transfers these jobs to the IO-Base
library. As soon as the IO-Base library has processed these jobs, it in turn sends an
acknowledgment. An acknowledgment is sent in the same way as a job is sent to the
firmware.

Description of driver porting
4.2 How the driver basically works

 DK-HN-IE PN IO Porting instructions
24 Programming Manual, 09/2016, C79000-G8976-C439-01

Signaling IRT events in the productive phase
The IRT functionality uses the following interrupt-based events:

● APPL_START

● APPL_FAULT

● BUS_CYCLE

● TIME_SLICE_VIOLATION

The event APPL_START signals the completion of the IRT-IN data transfer to the host
memory. The application can now start to process the IO data (IN/OUT data). Once
processing is complete this must be signaled by the application to the IO-Base library. The
library acknowledges this with APPDONE so that the IRT data (OUT data) is transferred
back to the module.

If the acknowledgement (APPDONE) is not triggered up to the start of the network transfer,
the module ignores the OUT data. This is signaled to the application with the APPL-FAULT
event.

If it is detected that the acknowledgement of the interrupt source APPL_START was missed,
this is made up for by an error handling in the driver (TIME_SLICE_VIOLATION). The
application and the IO-Base library are not involved in this

 Description of driver porting
 4.3 Basic communication between the library and the driver

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 25

4.3 Basic communication between the library and the driver

Interface between driver and library
The IO Base library communicates with the driver using file operations, IO controls and
shared memory.

Registering an IO-Base library instance with the driver
The IO-Base library uses seven communications channels in the dual-port RAM. To do this,
the IO-Base library opens a device file for every channel. The IO-Base library also requires
the "/dev/cp1626_1/control" device file for the IRT interrupt and DMA functionality as well as
for managing instances. To allow the driver to distribute the jobs and acknowledgments from
the firmware to several IO-Base instances, when these register with the communications
channels they must inform the driver of their device file handle that they received when
opening the "/dev/cp1626_1/control" device file.

The IO-Base library registers with the driver in four steps:

1. The IO-Base library opens the "/dev/cp1626_1/control" device file.

2. The IO-Base library sends the IO control CP16XX_IOC_OAPP (register application) with
the file handle for the "/dev/cp1626_1/control" device file to obtain an application handle
from the driver.

3. It now opens a device file for each dual-port RAM communications channel.

4. The opened device files are linked to the application with the application handle.

Sending the job packets from the IO-Base library to the firmware
The IO-Base library can send job packets (e.g. Controller open etc.) to the firmware via the
driver. This takes place using the file operations "read", "write" and "ioctl".

Receiving job packets from the firmware
The IO-Base library can receive job packets from the firmware via the driver. This is
achieved with the "read" file operation.

Memory access functionality for reading process data
To allow the IO-Base library to make the process data available for the IO-Base user
program, the driver provides the IO-Base library with a service with which the memory for the
process image can be referenced in the address space of the application. This referencing of
the process image memory in the address space of the user has the following advantages:

● Fast, direct data access for the application

● No interrupts for data access

Description of driver porting
4.3 Basic communication between the library and the driver

 DK-HN-IE PN IO Porting instructions
26 Programming Manual, 09/2016, C79000-G8976-C439-01

4.3.1 Directory structure and files

Description
The "driver" directory contains the files that are independent of the operating system.

The "driver\linux" directory contains the files required by the driver for functions with the
Linux operating system. During porting, these files must be adapted to a different operating
system.

The files supplied with the development kit are listed in the tables below. The header files of
the Linux kernel are also required to allow generation in Linux. If you want to port to an
alternative operating system, you will need the header files of the target operating system.

Function of the platform-specific files

Driver files Purpose of the individual files
os.h
os_linux.h

Contain initial macros that must be filled with operating system
functions, e.g. mutexes, events, semaphores, event signaling.

cp16xx_linux.c Contain the operating system adapter, the driver registration
and deregistration, device detection and communication mech-
anisms between kernel and operating system.

cp16xx_linux_irq.c Contains the operating system-specific functions for handling
interrupts.

cp16xx_linux_irq_rtai.c Contains the operating system-specific functions for handling
interrupts when using RTAI.

Function of the non platform-specific files
The table below shows the files that are platform independent and must not be modified.
These files can be modified at any time by means of an update or error correction. They form
the non platform-specific library "DPRLIB".

Driver files Purpose of the individual files
cp16xx.h IO control - Definitions of the driver
cp16xx_base.c
cp16xx_base.h
module_macros.h
pci_map.h
ppa_hall.h
ppa_host_drv.c
ppa_host_drv.h
ppa_if.h
ppa_named_bitfields.h
ppa_regs.h
watchdog_rqb.h

Non operating system-specific driver functions containing user manage-
ment, parameter passing, watchdog functions and the access to the
register of the CP.

 Description of driver porting
 4.3 Basic communication between the library and the driver

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 27

Driver files Purpose of the individual files
dpr_channel.h
dprlibhost.c
dprlib.h
dpr_msg.h

host_dma_ram.h

wd_dpr_msg.h
mgt_dpr_msg.h

Contain driver-internal, non platform-dependent functions which handle
communication to the firmware via the dual-port RAM.

dprintern.c
dpintern.h

Contain driver-internal and non platform-dependent functions which han-
dle communication to the firmware via the dual-port RAM. These
files are also used by the firmware.

host_version.h
build_nr.h
prod.h
siemens.h
version.h

These files are used for versioning.

4.3.2 Non operating system-specific functions

Table with user management functions and structures

User management functions
 and structure

Description

CP16XX_APP_DATA_STRUCT Application management structure
cp16xx_app_free() Releases a management structure.
cp16xx_app_new() Sets up a management structure.
cp16xx_app_search() Searches for the management structure for a particular

application.

Table with device management functions and structures

Device management function and struc-
ture

Description

CP16XX_CARD_DATA_STRUCTstruct Management structure for a CP - This is set up when the
driver is loaded and is released again when the driver is
unloaded.

Description of driver porting
4.3 Basic communication between the library and the driver

 DK-HN-IE PN IO Porting instructions
28 Programming Manual, 09/2016, C79000-G8976-C439-01

Description of the DPRLIB functions
The non platform-dependent functions which are responsible for data transmission to the
firmware are grouped together in the "DPRLIB" library. These functions are used by the
driver. To make the driver source files clearer to understand, they are explained in the
following table. Communication takes place via channels in the dual-port RAM which are
implemented as ring buffers.

 Note

These source files must not be modified since they can be changed at any time during
updates and bug fixes and because the DPRLIB must match the firmware of the CP.

DPRLIB functions and structure Description
CP_DATA_STRUCT The function pointers listed below must be entered in this structure

by the driver. This structure contains all the dependencies be-
tween the DPRLIB and the driver and must also be passed on to
the DPRLIB with each call.
trigger_irq Function pointer to the function used to trigger

an interrupt to the CP 1626.
wakeup_daemo
n

Function pointer to a function which is called as
soon as the DPRLIB disconnects the link to the
firmware.

Parent Points to the structure
"CP16XX_APP_DATA_STRUCT" which is filled
out during the hardware connection.

DPRLIB_start() Start connection to the firmware - This function initializes the dual-
port RAM.

DPRLIB_stop() Stop connection to the firmware - This function resets the dual-port
RAM.

DPRLIB_channel_
write_message()

Writes a job packet to a communications channel in the dual-port
RAM.

DPRLIB_channel_
read_message()

Reads a job packet from a communication channel in the dual-port
RAM. This function is not blocking and returns immediately. If a
packet was read out successfully, it returns a DPR_OK.

DPRLIB_channel_ register_cbf() Registers a callback which is called when a job packet is received
from the dual-port RAM. As parameters this callback has the CP
communications channel and the job packet size. This callback
allocates the required memory and calls
DPRLIB_channel_read_message() to obtain the job packet.

Functions called by the operating system

The entry function ... is called by the operating system as soon as ...
cp16xx_base_ioctl() ... the IO-Base library calls an "ioctl" for a device file.
cp16xx_base_ioctl_1control_interf
ace()

... the IO-Base library calls an "ioctl" for a "control" device file.

cp16xx_base_ioctl_common2() ... the IO-Base library calls an "ioctl" for a device file other than "control".

 Description of driver porting
 4.3 Basic communication between the library and the driver

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 29

The entry function ... is called by the operating system as soon as ...
cp16xx_os_driver_cleanup() ... the driver is unloaded.
cp16xx_base_check_read_permis
sion()

... with a "read", the IO-Base library checks the registered application instance handle.
The actual "read" takes place via cp16xx_os_read.

cp16xx_base_release() ... the IO-Base library calls "fclose" for a device file.
cp16xx_base_write() ... the IO-Base library calls "write" for a device file.

Standardized functions

Entry functions Description
cp16xx_card_init() Initializes the management structures of the driver.
cp16xx_card_uninit() Deinitializes the management structures of the driver.
cp16xx_dma_init() Allocates DMA memory in the operating system.
cp16xx_dma_uninit() Releases allocated DMA memory.
cp16xx_pci_init() Enters IO areas of the CP in the address area of the driver
cp16xx_pci_uninit() Removes IO areas of the CP from the address area of the driver.

4.3.3 Functions dependent on the operating system

Description of the functions
The following functions described in the form of tables contain parts specific to the operating
system and if necessary need to be ported.

Channel management functions and structures

Function / macro / structure Description
CP16XX_CHANNEL_STRUCT Management structure for the communications channels
DPR_CHANNEL_INIT_OS() Internal function for setting up a management structure in the

locked state.
DPR_CHANNEL_UNINIT_OS Function for deinitializing a management structure.
DPR_CHANNEL_LOCK() Locks a management structure.
DPR_CHANNEL_UNLOCK() Unlocks a management structure.
DPR_CHANNEL_WAKEUP() Sets up a synchronization object.
DPR_CHANNEL_WAIT_FOR_WAKE
UP()

Waits for signaling of a synchronization object.

Description of driver porting
4.3 Basic communication between the library and the driver

 DK-HN-IE PN IO Porting instructions
30 Programming Manual, 09/2016, C79000-G8976-C439-01

Functions specific to the operating system that are called by the standardized functions

Entry function Description
cp16xx_irq_shared_cbf() Interrupt service routine
cp16xx_os_driver_cleanup() Is called by the operating system as soon as the driver is

unloaded.
cp16xx_os_driver_cleanup() Called by Linux as soon as the driver is unloaded.
cp16xx_os_driver_init() Called by Linux as soon as the driver is loaded.
cp16xx_os_init_irq() Internal function used to set up the interrupt service routine.
cp16xx_os_ioctrl() Is called as soon as the IO Base library calls an "ioctl" for a

device file.
cp16xx_os_irq_init() Registers the interrupt service routine with the operating

system.
cp16xx_os_irq_uninit() Internal function used to remove the interrupt service routine.
cp16xx_os_mmap() Is called as soon as the IO Base library calls an "mmap" for a

device file.
cp16xx_os_mmap_dma_remap() Used internally by "cp16xx_control_mmap()" for DMA

memory; references the kernel address space in the user
address space.

cp16xx_os_open() Is called as soon as the IO Base library calls an "fopen" for a
device file.

cp16xx_os_pci_init_resources() Internal function used to set up the PCI resources of the CP.
cp16xx_os_pci_probe() Called by Linux as soon as a CP is found. This function gen-

erates a CP instance and registers the found CP with the
operating system.

cp16xx_os_pci_remove() Called by the operating system as soon as the driver is un-
loaded as long as a CP exists.

cp16xx_os_pci_uninit_resources() Internal function used to release the PCI resources of the
CP.

cp16xx_os_read() Is called as soon as the IO-Base library calls a "read" for a
device file.

cp16xx_os_release() Is called as soon as the IO-Base library calls a "fclose" for a
device file.

cp16xx_os_reset() Is called by the driver before the CP reset and allows addi-
tional functions to be performed by the porting engineer when
necessary.

cp16xx_os_write() Is called as soon as the IO-Base library calls a "write" for a
device file.

down_timeout() Auxiliary function used implement a semaphore with timeout.

 Description of driver porting
 4.4 Porting the driver step-by-step

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 31

4.4 Porting the driver step-by-step
Porting requires an empty skeleton driver. This skeleton is filled with functions during the
course of these porting instructions. If you wish, you can copy a number of structures and
functions from the Linux driver files supplied. The porting instructions are divided into the
following eight steps:

Step Description
1 Preparation: Porting the macros in the "os_linux.h" file
2 Initialization and deinitialization
3 Locating the CP and integrating the CP resources in the operating system.

Creating management structures for the CP resources.
4 Defining the driver interface
5 Porting the connection establishment and termination from the IO-Base library to the

driver.
6 Porting the send functionality from the IO-Base library to the firmware via the driver.
7 Porting the receive functionality from the firmware to the IO-Base library.
8 Porting the memory referencing in the user address space.

4.4.1 Stage 1: Porting the macros of the "os_linux.h" file

Overview
This file contains all the initial macros that the driver needs. The driver encapsulates all
function calls to the operating system using initial macros. You need to port this file so that
you can then simply copy parts of the Linux driver in the following steps.

Creating a new operating-system-specific header file
If you have an operating system that is not supported, your task is to create a new operating
system define, for example, "_MYOS" and to port all macros in the "os_linux.h" file. You then
save the file under a different name, for example, "os_myos.h".

Integrating the new header file
The last job is to make sure that the previously ported file is included when your driver
source files include the "os.h" file. You do this by defining the operating system define
selected above, for example "_MYOS", in your make file and inserting the following lines in
"os.h":

#ifdef _MYOS

#include "os_myos.h"

#endif

Description of driver porting
4.4 Porting the driver step-by-step

 DK-HN-IE PN IO Porting instructions
32 Programming Manual, 09/2016, C79000-G8976-C439-01

Porting the macros
The following macros are defined for the driver:

Macro Functionality
DPR_THREAD_HANDLE Type which represents thread handles.
DPR_THREAD_CREATE
(tid, name, prio, c, d, func, arg)

Generates a thread and returns 1; returns 0 if an error occurs.
tid: Reference to a variable in which the thread handle is stored.
name: Name of the thread
prio: Priority of the thread
c: Thread option (not used)
d: Stack size
func: Pointer to the thread function
arg: Pointer to memory that the thread function receives as a parameter.

DPR_THREAD_DELETE
(hThread)

Releases a thread handle.
hThread: Handle to be released.

DPR_SEMAPHORE Type that represents a semaphore (depending on the operating system).
DPR_SEM_CREATE (semObj) Generates a counting semaphore.

semObj: Reference to the variable in which the semaphore is stored.
DPR_SEM_WAIT (semObj) Wait for a semaphore.

semObj: Reference to the variable in which the semaphore is stored.
DPR_SEM_WAIT_TIME
(semObj, msecs)

As above, but with "timeout" in ms.

DPR_SEM_POST (semObj) Sets the semaphore.
semObj: Reference to the variable in which the semaphore is stored.

DPR_SEM_DESTROY (semObj) Deletes the semaphore.
semObj: Reference to the variable in which the semaphore is stored.

DPR_TASK_DELAY (msecs) Time delay
msecs: Delay in milliseconds

DPR(_INTERPROCESS)_ MUTEX Type that represents a (cross-process) mutex (specific to operating system).
DPR(_INTERPROCESS)_
MUTEX_CREATE_UNLOCKED

Generates a (cross-process) mutex.

DPR_INTERPROCESS_MUTE_ LOCK Occupies a (cross-process) mutex.
DPR_INTERPROCESS_MUTE_ UNLOCK Releases a (cross-process) mutex.
DPR_INTERPROCESS_MUTE_
DESTROY

Deletes a (cross-process) mutex.

DPR_MEMCPY_TO_USER Copies data to the user. If you are using an operating system without kernel
address separation, a "memcpy" will always suffice here.

DPR_MEMCPY_FROM_USER Copies data from the user. If you are using an operating system without kernel
address separation, a "memcpy" will always suffice here.

DPRLIBERRMSG (fmt, args...) Output in the event of an error; arguments as with "printf".
DPRLIBLOGMSG (fmt, args...) Debug output if DEBUG is defined; arguments as for "printf".
DPR_ASSERT(x) Assert macro to define a defined stoppage if errors occur, for example to

implement a memory dump or emergency stop.

 Description of driver porting
 4.4 Porting the driver step-by-step

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 33

4.4.2 Stage 2: Initialization and deinitialization
In this step, you can test porting of the file "os_linux.h".

Perform the following steps to test the debug initial macros:

Step Description
1 Add the following line to the initialization routine of your driver:

TRC_OUT(0, LV_ERR, ("start %s\n",cp16xx_driver_version);
In your initialization routine, create a semaphore with the previously ported macros and start a thread that
immediately waits for the semaphore and sets a global variable "gThreadStopped" to 1 before thread clos-
es.

2 Copy the variable "cp16xx_driver_version" to your driver file.
3 In your deinitialization routine, set the semaphore so that the thread can finish.

Wait until the variable "gThreadStopped" changes to 1.
Add the following line to the end of your deinitialization routine of the driver:
TRC_OUT(0, LV_ERR, stop %s\n",cp16xx_driver_version);

4 Compile the driver and test the initialization or deinitialization.

4.4.3 Stage 3: Finding the CP and including the resources of the CP in the operating
system

Description
When the resources are included, five PCI memory areas are referenced in the operating
system and an interrupt service routine is integrated. The "CpData" structure is then filled
out. This structure is required by the non platform-dependent DPRLIB and contains all the
callbacks that the driver must make available to the DPRLIB library.

To port the hardware detection and resource integration to the operating system, you must
port the operating system-specific functions listed in Section "Stage 1: Porting the macros of
the "os_linux.h" file (Page 31)".

4.4.4 Stage 4: Defining the driver interface

General
In this step, you define the interface between the IO- Base library and the driver. The
firmware of the CP 1626 communicates with the IO-Base library over several communication
channels in the dual-port RAM that are set up as ring buffers.

Description of driver porting
4.4 Porting the driver step-by-step

 DK-HN-IE PN IO Porting instructions
34 Programming Manual, 09/2016, C79000-G8976-C439-01

Linux driver
The Linux driver creates a device file for each communications channel to be able to pass on
these communications channels transparently as far as the IO-Base library. This allows the
driver or IO-Base library to implement a simple Read/Write interface. There is no need to
implement encapsulation of the send or receive jobs. The driver also creates an additional
"dev/cp1626_1/control" device file with which additional services of the IO-Base library can
be made available.

Services of the driver
The following table lists all the mechanisms/services required by the IO-Base library. These
must be replaced by suitable equivalent interfaces to your ported driver. In the following
steps, it is always assumed that the interface implemented in Linux is used.

Services of the access point "/dev/cp1626_1/control"
The access point "control" supports the following interface:

Control Description
fopen Function for obtaining an operating system file handle for the

"/dev/cp1626_1/control" device file.
fclose Function for closing a "/dev/cp1626_1/control" device file.
mmap Service for referencing PCIe resources of the CP 1626 to the user

address space
IO control: CP16XX_IOC_CAPP Service for deleting an application instance handle
IO control:
CP16XX_IOC_IRTCBF

Service for registering the use of interrupt notifications

IO control: CP16XX_IOC_OAPP Service for creating an application instance handle
IO control: CP16XX_IOCRESET Service for hardware reset of the CP 1626
IO control:
CP16XX_IOCSHUTDOWN

Service used to shutdown a communication link in an emergency,
i.e. an application is deregistered from the driver and all data
packets in the dual-port RAM are removed.

read Service for blocking reading of incoming events of the IO chan-
nels. The events are distinguished by the transferred length pa-
rameter.

Services for the remaining access points
The following access points exist:

● stream_req

● steam_resp

● sync_alarm

● modind

● datarec

● service

 Description of driver porting
 4.4 Porting the driver step-by-step

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 35

● notify

● watchdog

Control Description
fopen Function for obtaining an operating system file handle for the de-

vice file that corresponds to a communications channel in the dual-
port RAM.

fclose Function used to close a device file that corresponds to a commu-
nications channel in the dual-port RAM.

Write Service used to send a job packet to the firmware.
read Service for receiving a job package from the firmware.
IO control: CP16XX_IOC_BIND Service to bind the device file handle to the application instance

handle.
IO control:
CP16XX_IOC_UNBIND

Service to unbind the device file handle from the application in-
stance handle.

Procedure with only single access to the driver
If your operating system does not allow multiple access to the driver from the application
context at the same time, you need to implement a request block interface and a multiplexer.
The request block could have the following structure:

struct driver_request
{
 unsigned long opcode,
 unsigned long channel,
 unsigned long dataSize,
 unsigned char Buff-
er[4096]
}

// read,write,ioctl...
// which channel to use
// net length of message
// Buffer for Message

 Note

If you require a request block interface and your operating system also distinguishes
between the kernel and user address space, you must always map the data pointer to the
kernel address space first!

4.4.5 Stage 5: Porting the connection establishment and termination from the IO-
Base library to the driver.

Description
For every connection setup, the Linux driver has a two-stage registration mechanism that
must be run through for every IO-Base instance.

In the first stage, the IO-Base library calls an "fopen“ for all access points to obtain a non
operating system-dependent file handle.

Description of driver porting
4.4 Porting the driver step-by-step

 DK-HN-IE PN IO Porting instructions
36 Programming Manual, 09/2016, C79000-G8976-C439-01

In the second stage, the IO-Base library fetches an application handle by sending the
CP16XX_IOC_OAPP IO control to the "Control“ file handle.

The IO-Base library now calls the CP16XX_IOC_BIND IO control for the remaining file
handles specifying the application handle.

From this time onward, the driver knows which file handle belongs to which application and
how the communication to the firmware is structured.

When the connection is released, the IO control call CP16XX_IOC_UNBIND is first called for
all file handles, with the exception of the control file handle. The IO control
CP16XX_IOC_CAPP is then sent to the control file handle.

Finally, an "fclose" is issued to all file handles.

The following functions for connection establishment and termination must be ported from
the IO-Base library to the driver:

Functions Description
DPR_CHANNEL_INIT_OS() Internal function for setting up a management structure in the

locked state.
DPR_CHANNEL_LOCK() Locking of the management structure for communication to the IO-

Base library.
DPR_CHANNEL_UNINIT_OS() Function for deinitializing a management structure.
DPR_CHANNEL_UNLOCK() Unlocks a management structure.
DPR_CHANNEL_WAIT_FOR_
WAKEUP()

Wait for a signal of an incoming message using a synchronization
object.

DPR_CHANNEL_WAKEUP() Signal with a synchronization object that a message is pending.

4.4.6 Stage 6: Porting send functionality from the IO-Base library to the firmware

Description
Messages are sent by the IO-Base library via the firmware to the driver using a "write" call.
This call transfers a pointer to the job packet for the firmware and the length of the job
packet. The driver takes the pointer and length from the parameters transferred with "write"
and calls the "DPRLIB_channel_write_message()" function. This function belongs to the non
platform-dependent dual-port library and writes the job packet to the dual-port RAM.

To port this functionality, you only need the following function:

Function Description
cp16xx_os__write() This function is called by Linux as soon as the application issues a "write".

This function determines the channel and calls the function
"DPRLIB_channel_write_message()".

 Description of driver porting
 4.4 Porting the driver step-by-step

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 37

4.4.7 Stage 7: Porting the receive functionality from the firmware to the IO-Base
library.

Description
Receiving job packets from the firmware involves five steps:

Step Description
1 The IO-ase library calls the "read" function from within a thread.

If job packets from the firmware are already available in the dual-port RAM, the "read" call returns immediately.
Otherwise the thread blocks with this call until a job package is received from the firmware.

2 Using an interrupt, the firmware signals that it has written a job packet to the dual-port RAM.
3 The interrupt service routine ISR "cp16xx_irq_shared_cbf()" registered in Section "Stage 3: Finding the CP and

including the resources of the CP in the operating system (Page 33)" is called due to the interrupt in Step 2.
The ISR of the driver must call the non platform dependent function "cp16xx_process_dpr_irq" with the parameter of
the "CP_16XX_CARD_DATA_STRUCT" structure contained.
The ISR "cp16xx_irq_shared_cbf()" then acknowledges the interrupt and terminates.

4 The function from stage 3 calls the DPRAM function dprlib_int_callback. Here an internal semaphore is set to wake
a DPRLIB internal worker thread.

5 The DPRLIB library-internal worker thread determines the communications channel in which a job packet is located,
and calls the function "cp16xx_base_read_cbf()" that was registered by the driver.
This function occupies a block memory and calls the "DPRLIB_channel_read_message()" function to copy the data
to the memory block.
The memory block is then inserted in the chained block list of the corresponding channel.
Finally, the IO-Base library thread in the blocked "read" is woken up so that it can return the job packet to the IO-
Base library.

 Note

The mechanism described above ensures that the driver spends as little time as possible
within the interrupt context.

This is important so that the start of other interrupt service routines, for example of the
operating system or other hardware, is delayed as little as possible.

To port this functionality, you need the following function:

Function Description
cp16xx_os_read() This function is called in the driver as soon as the IO-Base library has sent the

blocking "read" for the communication from the driver to the IO-Base library.
This is blocked until new data is present and can be read.

Description of driver porting
4.4 Porting the driver step-by-step

 DK-HN-IE PN IO Porting instructions
38 Programming Manual, 09/2016, C79000-G8976-C439-01

4.4.8 Stage 8: Porting memory referencing in the user address space

Description
The "/dev/cp1626_1/control" device file supports the IO control and as well as the
registration/deregistration is also used among other things for including memory areas of the
CP 1626 in the user address space for the IO-Base library.

Example:

To port this functionality, you only need the following function:

Function Description
cp16xx_os_mmap() This function is called by Linux as soon as the IO-Base library issues "mmap" for the

"/dev/cp1626_1/control" device file.

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 39

 Description of porting the IO base library 5

This section explains the functionality of the IO-Base interface and how to port it to your
target operating system.

5.1 Requirements for the target operating system

Required operating system functionality
The IO-Base library requires the following operating system functionality:

● Threads

● Mutexes

● Semaphores

● Standard C/C++ libraries

5.2 How the IO-Base library works

Overview
The IO-Base library provides the application with PROFINET IO functionality in the form of
the IO-Base interface. The main task of the user is to port the functions responsible for
communication with the driver.

The following diagram shows an overview of the functional relationship between the IO-Base
interface and the firmware.

Description of porting the IO base library
5.2 How the IO-Base library works

 DK-HN-IE PN IO Porting instructions
40 Programming Manual, 09/2016, C79000-G8976-C439-01

Figure 5-1 Communication of the application and driver with the firmware via the dual-port RAM.

 Description of porting the IO base library
 5.3 Directory structure and files

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 41

5.3 Directory structure and files

Description
The source files and headers for the IO Base library can be found in the "pniolib" directory.

The table below lists the modules of the "pniolib" directory and explains their function.

Module name Function
dpram DPRAM communication
iodataupdate Access to the process image
iobase Localizes the data within the process image
kramiotlb Contains the PROFINET IO logic
Ppa Transfer of IO data
tracelib Contains the trace functionality
version Contains the version header files
Watchdog Watchdog

Description of the module directory content
The following table describes the directories of the modules and their content.

 Note

The number of modules differs depending on the supplied software version.

Directories Content
csd Make files
src Source files
inc Header files

Files that need to be ported
The table below shows the files that are platform specific and have to be adapted for porting.
The IO-Base library was implemented in C++ and uses the standard C/C++ libraries.

Files Purpose of the individual files
os.h
os_linux.h

Contain initial macros that must be filled with operating system functions,
e.g. creation of mutexes, events, semaphores, signaling of events.

trace_os.c
traceout.cpp

Contain functions for the trace mechanism.
The functions only have to be ported if you use a target platform without a
file system or file mapping.

Description of porting the IO base library
5.4 Functions dependent on the operating system

 DK-HN-IE PN IO Porting instructions
42 Programming Manual, 09/2016, C79000-G8976-C439-01

5.4 Functions dependent on the operating system

Functions for binding the IO-Base library to the driver

Function Description
ICommon::InitCp() Initializes the communications channels to the driver.
ICommon::UninitCp() Deinitializes the communications channels to the driver.
dpr_send_receive_sync() Sends a synchronous job packet to the firmware via the driver and then

waits for the response from the firmware.
process_channel_read() Thread function for reading out job packets and acknowledgments from

the firmware.
dpr_open_channel() Opens a communications channel to the driver.
dpr_close_channel() This function closes a communications channel to the driver.
dpr_send() Sends a job packet to the firmware via the driver.

Trace functions

Function Description
TRC_GetCurrentThreadId() Supplies the thread ID.
TRC_GetCurrentProcessId() Supplies the process ID.
TRC_GetFormattedLocalTi
me()

Supplies the date and time as a string.

TRC_OutputDebugString() Writes a trace entry to the console.
TRC_ExtractBegin() Opens the trace configuration file for the trace and maps it to the

memory to provide faster direct access for the function
"TRC_ExtractKey()".
If your target platform does not support file mapping, you simply have
to read in the complete file.
If your target platform does not have a file system, you can leave this
function empty.

TRC_ExtractKey() Reads an entry from the trace configuration file. If your target system
does not have a file system, you must permanently encode the values
for the entries.

TRC_ExtractEnd() Removes the trace configuration file for the trace from the memory.

 Description of porting the IO base library
 5.5 Porting the IO-Base library step-by-step

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 43

5.5 Porting the IO-Base library step-by-step

General
Porting requires a C/C++ development environment with the standard C/C++ libraries. You
perform porting in two steps:

Step Description
1 Porting the trace module
2 Port the IO-Base library link for the driver.

5.5.1 Stage 1: Porting the trace module

Description
The file "traceout.cpp" only has to be ported if your target system does not contain a file
system. In this case, you must convert the file accesses to, for example, memory accesses.

The file "trace_os.c" contains the logic required to read in and evaluate the trace
configuration file. The individual functions that must be ported are listed in the table in the
section on trace functions in Section "Functions dependent on the operating system
(Page 42)".

5.5.2 Stage 2: Porting the IO-Base library link to the driver

Description
The file "dpr_adapter.cpp" contains the code for communication with the firmware via the
driver. If the access functions there differ from those in your operating system you will need
to adapt them there. The individual functions to be ported are listed in the table in Section
"Functions dependent on the operating system (Page 42)".

Description of porting the IO base library
5.6 IO-Base library debug support

 DK-HN-IE PN IO Porting instructions
44 Programming Manual, 09/2016, C79000-G8976-C439-01

5.6 IO-Base library debug support

Description
Debug support is available in the form of a trace file mechanism. The trace quality is
configured in the file "pniotrace.conf".

Description of the trace configuration file
The trace configuration file "pniotrace.conf" has the following entries:

Entry Description
TRACE_TIME 0: No trace

1: Trace on
TRACE_DEST 0: No trace

1: Create a new file for the trace
2: Append the trace to an existing trace
3: Trace to console

TRACE_DEPTH Trace depth - Value of 3 means: Enable traces for value 1-
3.
0: None
1: Trace with error
2: Trace with warnings
3: Trace with information
4 - 8: Trace depths 1 to 8 (meaning see pniotrace.conf)
9: Trace for time-critical functions (IRT etc.)
0x0FFFFFFF: All traces

TRACE_FILE_ENTRIES Maximum number of trace entries
TRACE_FILE_FAST Trace file access type

0:Slow, in other words, the trace file is opened for every
entry and closed again after the trace entry has been out-
put.
1:Fast, in other words, the trace file is opened once and
closed only after the application is exited.

TRACE_FILE_NAME Trace file name
TRACE_GROUP Submodule to be traced - See "tracesub.h" for the permitted

values. The values can be ORed so that several submod-
ules can be traced at the same time.

 Description of porting the IO base library
 5.6 IO-Base library debug support

DK-HN-IE PN IO Porting instructions
Programming Manual, 09/2016, C79000-G8976-C439-01 45

Entry Description
TRACE_MAX_BACK_FILES Maximum number of created trace files - If this value is 2,

this means the following:
• The current trace file has reached the maximum number

of entries.
• The trace file is renamed
• A new trace file is created.
If the new current trace file reaches the maximum number of
entries, the first file is deleted and the second file becomes
the first file.

TRACE_LEVEL_MODE Not evaluated at present.
TRACE_SHOW_LINES Not evaluated at present.
TRACE_APPLICATION Not evaluated at present.
TRACE_DestHelp_NOTRACE Not evaluated at present.
TRACE_DestHelp_NEWFILE Not evaluated at present.
TRACE_DestHelp_SAMEFILE Not evaluated at present.
TRACE_DestHelp_DEBUGOUT Not evaluated at present.

 Note

If you use IRT mode, deactivate the trace otherwise your real-time capability will be
impaired.

If, however, you also require the trace functionality in IRT mode, you may need to improve
the performance of the trace module.

 Example: By replacing output operations (file or console) with memory operations.

Description of porting the IO base library
5.7 Testing the IO-Base library

 DK-HN-IE PN IO Porting instructions
46 Programming Manual, 09/2016, C79000-G8976-C439-01

5.7 Testing the IO-Base library

Description
When porting has been completed, the IO-Base library must be tested on the target
operating system.

Procedure
Test the individual blocks of functions of the IO-Base library in the specified order:

Step Description
1 Test the controller functionality

For this purpose, put the "ctrl_rw_digital_io" demo application and the associated
configuration into operation. To do this, you will need the structure specified in
the configuration.

2 Test the device functionality
For this purpose, put the "dev_rw_digital_io" demo application into operation. To
do this, you will need an additional IO controller.

	DK-HN-IE PN IO Porting instructions
	Table of contents
	1 Introduction
	1.1 Note on the SIMATIC NET glossary - DVD + Internet

	2 Quick Start
	2.1 Architecture of the DK HN-IE PN IO software
	2.2 Installation in Linux

	3 Preparing RTAI and the Linux kernel
	3.1 Preparing the system
	3.2 Generating, installing and testing real-time extension RTAI
	3.2.1 Downloading source files from the Internet
	3.2.2 Extracting source files
	3.2.3 Configuring and generating the Linux kernel
	3.2.4 Installing the generated Linux kernel
	3.2.5 Configuring and generating the RTAI real-time extension
	3.2.6 Checking whether the real-time extension RTAI works

	3.3 Basic procedure for installing the DK HN-IE PN IO software in Linux.

	4 Description of driver porting
	4.1 Requirements for the target operating system
	4.2 How the driver basically works
	4.3 Basic communication between the library and the driver
	4.3.1 Directory structure and files
	4.3.2 Non operating system-specific functions
	4.3.3 Functions dependent on the operating system

	4.4 Porting the driver step-by-step
	4.4.1 Stage 1: Porting the macros of the "os_linux.h" file
	4.4.2 Stage 2: Initialization and deinitialization
	4.4.3 Stage 3: Finding the CP and including the resources of the CP in the operating system
	4.4.4 Stage 4: Defining the driver interface
	4.4.5 Stage 5: Porting the connection establishment and termination from the IO-Base library to the driver.
	4.4.6 Stage 6: Porting send functionality from the IO-Base library to the firmware
	4.4.7 Stage 7: Porting the receive functionality from the firmware to the IO-Base library.
	4.4.8 Stage 8: Porting memory referencing in the user address space

	5 Description of porting the IO base library
	5.1 Requirements for the target operating system
	5.2 How the IO-Base library works
	5.3 Directory structure and files
	5.4 Functions dependent on the operating system
	5.5 Porting the IO-Base library step-by-step
	5.5.1 Stage 1: Porting the trace module
	5.5.2 Stage 2: Porting the IO-Base library link to the driver

	5.6 IO-Base library debug support
	5.7 Testing the IO-Base library

